Коррозия металлов и неметалических материалов

Коррозия. Виды и способы защиты от коррозии

Коррозия материалов является одной из важных мировых проблем. Практика показывает, что только прямые безвозвратные потери металла от коррозии составляют 10…12% всей производимой стали, при этом суммарный ущерб в промышленных странах достигает 4-5% от национального дохода. Ведь корродирует не только черный металл ( сталь, чугун, железо и некоторые его сплавы ), но и бетон, дерево, камень, даже полимеры. Наиболее интенсивная коррозия наблюдается в зданиях и сооружениях химических производств, что объясняется действием различных газов, жидкостей и мелкодисперсных частиц непосредственно на строительные конструкции, оборудование и сооружения, а также проникновением этих агентов в грунты и действием их на фундаменты. Агрессивному воздействию подвержено до 75% строительного фонда. Коррозия металла приводит к ослаблению конструктива и, как следствие, снижению безопасности эксплуатации сооружений.

Коррозия — процесс разрушения материалов вследствие химических или электрохимических процессов. По характеру самого процесса коррозию разделяют на две основные группы : химическую и электрохимическую. Химическая коррозия протекает в не электролитах – жидкостях, не проводящих электрического тока и в сухих газах при высокой температуре. Электрохимическая коррозия происходит в электролитах и во влажных газах и характеризуется наличием двух параллельно идущих процессов: окислительного (растворение металлов) и восстановительного (выделение металла из раствора).

По внешнему виду коррозию различают: пятнами, язвами, точками, внутрикристаллитную, подповерхностную. По характеру коррозионной среды различают следующие основные виды коррозии: газовую, атмосферную, жидкостную и почвенную.

Газовая коррозия происходит при отсутствии конденсации влаги на поверхности. На практике такой вид коррозии встречается при эксплуатации металлов при повышенных температурах.

Атмосферная коррозия относится к наиболее распространенному виду электрохимической коррозии, так как большинство металлических конструкций эксплуатируются в атмосферных условиях. Коррозия, протекающая в условиях любого влажного газа, также может быть отнесена к атмосферной коррозии.

Жидкостная коррозия в зависимости от жидкой среды бывает кислотная, щелочная, солевая, морская и речная. По условиям воздействия жидкости на поверхность металла эти виды коррозии получают добавочные характеристики : с полным и переменным погружением, капельная, струйная. Кроме того, по характеру разрушения различают коррозию равномерную и неравномерную.

По степени воздействия на металлы коррозионные среды делятся на неагрессивные, слабоагрессивные, среднеагрессивные и сильноагрессивные.

Бетон и железобетон находят широкое применение в качестве конструкционного материала при строительстве зданий и сооружений химических производств. Но они не обладают достаточной химической стойкостью против действия кислых сред. Свойства бетона и его стойкость в первую очередь зависит от химического состава цемента из которого он изготовлен. Наибольшее применение в конструкциях и оборудовании находят бетоны на портландцементе. Причиной пониженной химической стойкости бетона к действию минеральных и органических кислот является наличие свободной гидроокиси кальция (до 20%), трехкальциевого алюмината (3CaO×Al2O3) и других гидратированных соединений кальция.

Коррозия бетона происходит тем интенсивнее, чем выше концентрация водных растворов кислот. При повышенных температурах агрессивной среды коррозия бетонов ускоряется. Несколько более высокой кислотостойкостью обладает бетон, изготовленный на глиноземистом цементе, из-за пониженного содержания оксида кальция. Кислотостойкость бетонов на цементах с повышенным содержанием оксида кальция в некоторой степени зависит от плотности бетона. При большей плотности бетона кислоты оказывают на него несколько меньшее воздействие из-за трудности проникновения агрессивной среды внутрь материала.

Щелочестойкость бетонов определяется главным образом химическим составом вяжущих, на которых они изготовлены, а также щелочестойкостью мелких и крупных заполнителей.

Увеличение срока службы строительных конструкций и оборудования достигается путем правильного выбора материала с учетом его стойкости к агрессивным средам, действующим в производственных условиях. Кроме того, необходимо принимать меры профилактического характера. К таким мерам относятся герметизация производственной аппаратуры и трубопроводов, хорошая вентиляция помещения, улавливание газообразных и пылевидных продуктов, выделяющихся в процессе производства; правильная эксплуатация различных сливных устройств, исключающая возможность проникновения в почву агрессивных веществ; применение гидроизолирующих устройств и др.

Непосредственная защита металлов от коррозии осуществляется нанесением на их поверхность неметаллических и металлических покрытий либо изменением химического состава металлов в поверхностных слоях: оксидированием, азотированием, фосфатированием.

Для защиты поверхностей от коррозии существуют разнообразные покрытия: лакокрасочные (антистатичные и армированные, полиуретановые, акриловые, порошковые эпоксидно – полиэфирные, органосиликатные и кремнийорганические), металлизационные с цинком, алюминием, медью и комбинациями этих металлов. Это краски, лаки, эмали, тонкодисперсные порошки, пленки. Лакокрасочные покрытия вследствие экономичности, удобства и простоты нанесения, хорошей стойкости к действию промышленных агрессивных газов нашли широкое применение для защиты металлических и железобетонных конструкций от коррозии. Защитные свойства лакокрасочного покрытия в значительной степени обуславливаются механическими и химическими свойствами, сцеплением пленки с защищаемой поверхностью.

Лакокрасочные материалы в зависимости от назначения и условий эксплуатации делятся на десять групп:

  • А – покрытия стойкие на открытом воздухе;
  • АН – то же, под навесом;
  • П – то же, в помещении;
  • Х – химически стойкие;
  • Т – термостойкие;
  • М – маслостойкие;
  • В – водостойкие;
  • ХК – кислотостойкие;
  • ХЩ – щелочестойкие;
  • Б – бензостойкие.

Наиболее распространены в промышленности покрытия металлические, неметаллические (органического и неорганического происхождения), а также покрытия, образованные в результате химической и электрохимической обработки металла.

Выбор вида покрытия зависит от условий, в которых используется защищаемое изделие (перепад температур, повышенная влажность, морская или пресная вода, щелочь, кислота, соли металлов, радиация, электроток и огонь), и технологичность возможностей формирования покрытия.

Наиболее часто применяемые способы защиты металлов:

  • легирование;
  • электрохимическая защита;
  • покрытие металлами;
  • защитные пленки.

Легирование – это введение в металл на стадии его производства определенного количества специальных добавок, например – хрома или марганца. Это придает сталям особые свойства, необходимые для использования в сложных условиях. Для возведения современных зданий, особенно повышенной этажности, необходима высококачественная атмосферостойкая легированная сталь, например, погодоустойчивая марка COR-TEN. Такой материал позволяет решить проблемы эксплуатации сооружений даже в экстремальных климатических условиях.

Одними из самых популярных и относительно недорогих мер защиты от коррозии сегодня являются методы, изменяющие химический состав металла в поверхностных слоях. Как правило, это электрохимические способы нанесения покрытий на металл. Наиболее известный процесс называется оцинковкой, которая в зависимости от способа обработки металла делится на горячую и холодную. В первом случае обрабатываемый материал погружается в специальную ванну. Затем под воздействием переменного тока осуществляется его обработка в растворе фосфата цинка при плотности тока 4 А/дм², напряжении 20 В и температуре 600-700ºС. В результате электрохимической реакции образуется ферроцинковый сплав. При применении второго способа на подготовленную поверхность стального листа наносится защитный слой из цинка. Оцинковка толщиной 0,3 мм позволяет обеспечить защиту обработанной поверхности металла более чем на 30 лет.

Итальянская фирма «Metalnastri» разработала метод, сочетающий в себе качество горячего и технологичность холодного цинкования. Это простая идея наклейки цинковой фольги на стальную поверхность. Высокую антикоррозийность создает сплошной цинковый слой, а токопроводящие клеевые композиции обеспечивают и электрохимическую защиту поверхности.

ЦНИИПСК им. А.П. Мельникова предложил метод термодиффузионного цинкования (ТДЦ) метизных и малогабаритных изделий из стали и чугуна. Метод заключается в нагреве металлоизделий в среде, содержащей порошок цинка. В результате на поверхности изделия образуется цинковое покрытие с хорошими защитными и декоративными свойствами. Технологический процесс такого цинкования экологически чист и практически безотходен. В качестве сырья используются отечественные материалы, не требующие специальной обработки. ТДЦпокрытие обладает высокой адгезией и износостойкостью, обеспечиваемой в результате взаимной диффузии железа и цинка. Срок службы покрытия в 1,5-4 раза больше по сравнению с традиционными цинковыми покрытия.

Читайте также:
Наливной пол на деревянное основание: сложности, требования и технология заливки

Широкое распространение цинковых покрытий обусловлено их хорошими химическими свойствами. Для стали (катод) цинк является анодом, за счет этого образуется гальваническая пара, имеющая высокие защитные свойства, хорошо сохраняемые даже при малой толщине слоя. Скорость разрушения цинкового покрытия составляет примерно 1-10 мкм в год в зависимости от различных факторов. Оцинковка может осуществляться совместно с другими металлами – с добавлением алюминия (Al) или железа (Fe). В настоящее время в России широко используется сталь Galfan c цинкоалюминиевым покрытием и сталь Galvannealed с цинкожелезным покрытием.

При покрытии другими металлами в зависимости от вида коррозии покрывающий слой наносят различными способами. В качестве покрывающего материала часто используется хром или никель. Хромирование – электролитическое нанесение покрытия из хрома на поверхность металлического изделия. Никелирование, также нанесение на поверхность изделий никеля толщиной от 2 до 50 мкм.

На практике обычно применяются следующие методы:

  • Погружение изделий в расплавленный металл (горячий способ). Заключается в том, что изделия погружают в ванну с расплавленным металлом или же нагретую поверхность деталей обволакивают расплавленным металлом.
  • Метод термической диффузии. Основан на диффузии (проникновении) в поверхностные слои деталей присадок при высокой температуре. Диффузионные покрытия наносятся при нагреве деталей в твердой (порошкообразной), жидкой или газообразной фазе металла.
  • Металлизация. Заключается в нанесении (распылении) на поверхность деталей слоя присадок расплавленного металла с помощью пульверизаторов.
  • Контактный метод осаждения металла. Осуществляется без применения внешнего источника тока за счет вытеснения менее благородными металлами более благородных из растворов их солей. Толщина таких покрытий невелика и защитные свойства их невысоки.

Следует отметить, что металлические покрытия достаточно хорошо защищают металл от коррозии. Однако при нарушении защитного слоя она может протекать даже более интенсивно, чем без покрытия. Поэтому в промышленности для улучшения свойств металлических поверхностей, обработанных электротехническим методом, используется способ нанесения защитных покрытий из полимерных материалов. Такие продукты получили широкое распространение в строительной индустрии. Использование полимерных материалов для антикоррозионной защиты обусловлено их уникальными физико-химическими показателями. Полимеры имеют небольшой удельный вес, высокую стойкость к не механическим воздействиям (соприкосновение с водой, солями, щелочами или кислотами). Обладают пластичностью и светостойкостью. В настоящее время наибольшее распространение получили « трехслойные» продукты с двойным уровнем защиты. Первый уровень – непосредственно оцинковка, второй – полимер. Благодаря такой структуре сталь становится стойкой к воздействию агрессивных сред, механическим повреждениям и ультрафиолетовому изучению. Срок их службы составляет порядка 50 лет, в зависимости от качества и толщины покрытия. Необходимо также учесть, что высокие эксплуатационные характеристики таких материалов напрямую зависят от качества оцинковки исходного металла, а потребительские качества – от применяемого в составе полимера.

Альтернативой полимерным материалам являются конструкционные пластмассы и стеклопластики, получаемые на основе различных синтетических смол и стекловолокнистых наполнителей. В настоящее время выпускается значительный ассортимент материалов, особое место среди них занимает полиэтилен. Он инертен во многих кислотах, щелочах и растворителях, а также имеет высокую теплостойкость.

Другим направлением использования полиэтилена в качестве химически стойкого материала является порошковое напыление. Применение полиэтиленовых покрытий объясняется их дешевизной и хорошими защитными свойствами. Покрытия легко наносятся на поверхность различными способами, в том числе пневматическим и электростатическим распылением.

Защитные пленки. Способ заключается в нанесении на металл защитной оболочки из различных компонентов в следующей последовательности: шпатлевка, грунтовка, краска, лак или эмаль.

Для противокоррозионной защиты конструкций зданий и сооружений (ферм, ригелей, балок, колонн, стеновых панелей), а также наружных и внутренних поверхностей емкостного технологического оборудования, трубопроводов, газоводов, воздуховодов вентиляционных систем, которые в процессе эксплуатации не подвергаются механическим воздействиям абразивных частиц, применяют лакокрасочные покрытия. Такие покрытия наиболее эффективны для защиты от атмосферной коррозии. Однако срок службы лакокрасочных покрытий невелик и составляет 4-5 лет. Для повышения коррозионной стойкости лакокрасочных покрытий используют различные противокоррозионные пигменты.

Следует назвать антикоррозионные пигменты фирмы SNCZ (Франция): фосфаты цинка; модифицированные фосфаты цинка; фосфаты, не содержащие цинк; полифосфаты; феррит кальция, а также тетраоксихромат цинка; хроматы стронция, цинка, бария.

Наиболее часто используются фосфаты цинка PZ 20 и PZ W2 в большинстве лакокрасочных систем: органоразбавляемых, водоразбавляемых, воздушной и горячей сушки.

Там, где нельзя использовать противокоррозионные пигменты, содержащие цинк (контакт с пищевыми продуктами), используются пигменты на основе щелочеземельных фосфатов Новинокс РАТ 30, Новинокс РАТ 15 и Новинокс РС01.

Металлоконструкции, подвергающиеся воздействию соляного тумана, могут быть защищены лакокрасочными материалами, содержащими фосфат щелочеземельных металлов. Фосфат щелочеземельных металлов – нетоксичный пигмент, что повышает экологичность лакокрасочного покрытия и увеличивает сферу его применения.

Тетраоксихромат цинка ТС 20, хромат стронция L203E и хромат цинка CZ20 – применяются в лакокрасочных материалах, использующихся в авиационных, судовых покрытиях, а также в составе адгезивов для легких сплавов.

Для защитных покрытий, эксплуатирующихся в условиях высоких температур (до 600ºС), используются хромат бария М 20 и феррит кальция FC 71. Применение феррита кальция для защитных покрытий – новое направление в лакокрасочных материалах. В табл. 1 представлена стойкость различных лакокрасочных материалов (ЛКМ) к агрессивным средам.

Таблица 1. Стойкость лакокрасочных материалов

ЛКМ, по типу связующего Стойкость к агрессивным средам
Вода Водяной пар Растворители Разбавленные растворители Кислоты Разбавленные кислоты Щелочи Разбавленные щелочи
Винилхлоридные + ++ ± ± ± + ± +
Хлоркаучуковые + ++ ± ± ± + ± +
Акриловые ± ++ ± ± ± + ± +
Алкидные ± + ± + ± ± ± ±
Битумные ++ ++ ± ± ± ± ± +
ПУ ароматические ± ++ + ++ + + ± ±
ПУ алифатические + ++ ± + ± + ± ++
Эпоксиднополиуретановые ++ ++ ± ± ± + + ++
Эпоксидные ++ ++ + ++ ± + ++ ++
Цинк-силикатные + ++ ++ ++ + + + +
Перхлорвиниловые ++ ++ ± ± ± ± ± +

Примечания: ++ отлично, + хорошо, ± удовлетворитльно

Наиболее распространенным способом защиты от коррозии строительных конструкций, сооружений и оборудования является использование неметаллических химически стойких материалов: кислотоупорной керамики, жидких резиновых смесей, листовых и пленочных полимерных материалов (винипласта, поливинилхлорида, полиэтилена, резины), лакокрасочных материалов, синтетических смол и др. Для правильного использования неметаллических химически стойких материалов необходимо знать не только их химическую стойкость, но и физико-химические свойства, обеспечивающие условия совместной работы покрытия и защищаемой поверхности. При использовании комбинированных защитных покрытий, состоящих из органического подслоя и футеровочного покрытия, важным является обеспечение на подслое температуры, не превышающей максимальной для данного вида подслоя.

Для листовых и пленочных полимерных материалов необходимо знать величину их адгезии с защищаемой поверхностью. Ряд неметаллических химически стойких материалов, широко используемых в противокоррозионной технике, содержит в своем составе агрессивные соединения, которые при непосредственном контакте с поверхностью металла или бетона могут вызвать образование побочных продуктов коррозии, что, в свою очередь, снизит величину их адгезии с защищаемой поверхностью. Эти особенности необходимо учитывать при использовании того или иного материала для создания надежного противокоррозионного покрытия.

Читайте также:
Гальванопластика в домашних условиях - материалы и оборудование

Коррозия металлов и способы защиты от нее

Коррозия – это процесс разрушения металлов и металлических конструкций под воздействием различных факторов окружающей среды – кислорода, влаги, вредных примесей в воздухе.

Коррозионная стойкость металла зависит от его природы, характера среды и температуры.

  • Благородные металлы не подвергаются коррозии из-за химической инертности.
  • Металлы Al, Ti, Zn, Cr, Ni имеют плотные газонепроницаемые оксидные плёнки, которые препятствуют коррозии.
  • Металлы с рыхлой оксидной плёнкой – Fe, Cu и другие – коррозионно неустойчивы. Особенно сильно ржавеет железо.

Различают химическую и электрохимическую коррозию.

Химическая коррозия сопровождается химическими реакциями. Как правило, химическая коррозия металлов происходит при действии на металл сухих газов, её также называют газовой.

При химической коррозии также возможны процессы:

Fe + 2HCl → FeCl2 + H2

2Fe + 3Cl2 → 2FeCl3

Как правило, такие процессы протекают в аппаратах химических производств.

Электрохимическая коррозия – это процесс разрушения металла, который сопровождается электрохимическими процессами. Как правило, электрохимическая коррозия протекает в присутствии воды и кислорода, либо в растворах электролитов.

В таких растворах на поверхности металла возникают процессы переноса электронов от металла к окислителю, которым является либо кислород, либо кислота, содержащаяся в растворе.

При этом электродами являются сам металл (например, железо) и содержащиеся в нем примеси (обычно менее активные металлы, например, олово).

В таком загрязнённом металле идёт перенос электронов от железа к олову, при этом железо (анод) растворяется, т.е. подвергается коррозии:

Fe –2e = Fe 2+

На поверхности олова (катод) идёт процесс восстановления водорода из воды или растворённого кислорода:

2H + + 2e → H2

O2 + 2H2O + 4e → 4OH –

Например, при контакте железа с оловом в растворе соляной кислоты происходят процессы:

Анод: Fe –2e → Fe 2+

Катод: 2H + + 2e → H2

Суммарная реакция: Fe + 2H + → H2 + Fe 2+

Если реакция проходит в атмосферных условиях в воде, в ней участвует кислород и происходят процессы:

Анод: Fe –2e → Fe 2+

Катод: O2 + 2H2O + 4e → 4OH –

Суммарная реакция:

Fe 2+ + 2OH Fe(OH)2

4Fe(OH)2 + O2+ 2H2O → 4Fe(OH)3

При этом образуется ржавчина.

Методы защиты от коррозии

Защитные покрытия

Защитные покрытия предотвращают контакт поверхности металла с окислителями.

  • Катодное покрытие – покрытие менее активным металлом (защищает металл только неповреждённое покрытие).
  • Покрытие краской, лаками, смазками.
  • Создание на поверхности некоторых металлов прочной оксидной плёнки химическим путём (анодирование алюминия, кипячение железа в фосфорной кислоте).

Создание сплавов, стойких к коррозии

Физические свойства сплавов могут существенно отличаться от свойств чистых металлов. Добавление некоторых металлов может приводить к повышению коррозионной стойкости сплава. Например, нержавеющая сталь, новые сплавы с большой коррозионной устойчивостью.

Изменение состава среды

Коррозия замедляется при добавлении в среду, окружающую металлическую конструкцию, ингибиторов коррозии. Ингибиторы коррозии — это вещества, подавляющие процессы коррозии.

Электрохимические методы защиты

Протекторная защита: при присоединении к металлической конструкции пластинок из более активного металла – протектора. В результате идёт разрушение протектора, а металлическая конструкция при этом не разрушается.

Виды и способы удаления коррозии металла

Металл может разрушиться под воздействием многих факторов — высокой влажности, температуры, тока, различных химических веществ. Коррозия металлов бывает разных видов. Без должной защиты она может полностью разрушить металлоконструкцию. Важно изучить виды коррозионных процессов, способы защиты металла и методы удаления ржавчины.

Ржавая труба

Что такое коррозия?

Коррозия — процесс разрушения металлов, сплавов, который развивает под воздействием разных факторов окружающей среды. При протекании данного процесса материал может быть разрушен частично или полностью. Следы коррозионного эффекта — пятна ржавчины разных цветов. Постепенно коррозия проникает вглубь материала, провоцируя появление сквозных отверстий с разрушенными краями.

Причины возникновения

Причины коррозионных процессов:

  • соприкосновение разных видов металлов, сплавов;
  • частые перепады температуры;
  • трение между металлическими поверхностями;
  • длительное воздействие влаги;
  • влияние кислот, щелочей, химических элементов;
  • использование некачественных жидкостей при механической обработке материала;
  • жировые пятна, остающиеся на металлических поверхностях после прикосновения к ним.

Ржавчина может образовываться при периодическом воздействии статического или постоянного тока.

Коррозионные процессы классифицируются зависимо от разных критериев. Основные из них — цвет, механизм образования ржавчины, тип агрессивной среды, характер разрушения.

По цвету

Зависимо от цвета бывают разные виды ржавчины. Она может быть черной, желтой, коричневой, красной. Оттенок зависит от химической формулы образовавшегося вещества.

Ржавый металл

Желтая

Химическая формула желтой ржавчины — FeO(OH)H2O. Она появляется под воздействием высокой влажности, в среде с малым количеством кислорода. Подобный вид ржавчины можно увидеть под водой.

Коричневая

Химическая формула коричневой ржавчины — Fe2O3. Встречается крайне редко, появляется без воздействия влаги.

Красная

Химическая формула красной ржавчины — Fe2O3•H2O. Образуется при одновременном воздействием воды и кислорода. Встречается чаще других видов. Разрушительный процесс протекает равномерно, постепенно распространяется на всю поверхность.

Черная

Химическая формула — Fe3O4. Появляется без воздействия влаги, в среде с малым количеством кислорода. Часто используется для создания сверхпроводников, поскольку является ферромагнетиком.

По механизму протекания

  • химическая;
  • электромеханическая.

Процессы отличаются по механизму разрушения материала.

Химическая

Процесс разрушения металла, провоцирующий распад металлических связей, развитие химических реакций между атомами материала. Элементы, которые взаимодействуют между собой, пространственно не разделяются. Скорость разрушения детали зависит от скорости протекания химической реакции.

Электрохимическая

Данный процесс разрушения металлических деталей протекает в среде электролитов и сочетается с возникновением тока.

Ржавый корабль

По типу агрессивной среды

  1. Атмосферная.
  2. Газовая.
  3. Радиационная.
  4. Подземная.
  5. Контактная.
  6. Биокоррозия.
  7. Коррозия током.
  8. Коррозийная кавитация.
  9. Коррозия под напряжением.
  10. Фреттинг-коррозия.
Атмосферная

Естественный процесс разрушения. Может протекать в воздушной или газовой атмосфере. Важное условие — повышенный уровень влажности. Чем он выше, тем быстрее разрушится материал.

Газовая

Процесс разрушения металлических деталей, который протекает в условиях газовой среды. Отличается низким уровнем влажности. Процесс образования ржавчины ускоряется при повышении температуры.

Радиационная

Возникает при интенсивном воздействии радиационного излучения. У сплавов высокой плотности протекает медленно.

Подземная

Если металлическая деталь какое-то время полежит под землей, можно заметить на ее поверхностях зеленый налет или другие цветовые искажения. Это следствие окислительный процессов, которые протекают в разных видах грунта.

Контактная

Быстро появляется в местах, где два разных металла соприкасаются друг с другом. Это обуславливается разницей стационарного потенциала в электролите.

Биокоррозия

Процесс разрушения металлических деталей, который обуславливается воздействием разных микроорганизмов, продуктов их жизнедеятельности.

Ржавые обломки судов

Коррозия током

Может происходить при воздействии блуждающего или внешнего тока. Скорость распространения ржавчины зависит от силы тока, длительности, периодичности его воздействия на металлические детали.

Коррозийная кавитация

Один из многочисленных процессов саморазрушения разных видов металлов. Он запускается при воздействии внешней среды, механического повреждении.

Коррозия под напряжением

Процесс разрушения сплавов, который происходит при взаимодействии механического напряжения с коррозийно-активной средой. Этот вид коррозии опасен для металлоконструкций, которые подвержены большим нагрузкам.

Фреттинг-коррозия

Сложный коррозионный процесс, который протекает под воздействием коррозийной среды с различными вибрациями. Чтобы не допустить образования ржавчины, важно снизить коэффициент трения металлических деталей.

Читайте также:
Пропитка для швов плитки - виды, нанесение и обновление

По характеру разрушения

  • сплошная;
  • избирательная;
  • местная;
  • подповерхностная;
  • межкристаллическая;
  • щелевая.

Они отличаются локализацией, степенью углубления в материал, тяжестью разрушения.

Сплошная

При таком коррозионном процессе ржавчиной покрываются все металлические поверхности. Она может быть равномерной или неравномерной, зависимо от скорости разрушения материала в разных местах детали.

Избирательная

Подобный процесс затрагивает один из элементов металлоконструкции, который не имеет антикоррозийного покрытия, затормаживающего процесс разрушения.

Ржавый автомобиль (Фото: pixabay.com)

Местная

Пятна ржавчины разбросаны по металлической поверхности. Они представляют собой углубления разного размера, одна часть которых могут быть поверхностными, другие сквозными.

Подповерхностная

Появляется под металлическими поверхностями. Она быстро проникает вглубь материала. Данный вид коррозионных процессов характеризуется расслоением металла.

Межкристаллическая

Начинает появляться по границам отдельных зерен материала. Ее крайне сложно выявить по внешнему виду. Быстро ухудшаются показатели плотности, прочности, пластичности. Детали становятся хрупкими.

Щелевая

Образуется на местах соединения двух металлических деталей. Может появляться в технологических зазорах, под техническими прокладками.

Возможные последствия

Распространенные последствия коррозионных процессов:

  • расслоение материала;
  • изменение внешнего вида;
  • истощение деталей.

Появление ржавчины может привести к полному разрушению материала.

Методы защиты

Чтобы защитить металлические поверхности от образования коррозии, применяются разные методики. Каждая из них уникальна, имеет определенные особенности.

Нанесение защитного покрытия

Защитные покрытия могут быть двух видов — металлические, неметаллические. Виды неметаллических покрытий:

  1. Химический слой. Чаще это оксидные пленки, которые образуются на поверхности под воздействием пара, воздуха. Один из вариантов оксидирования — погружение деталей в раствор азотной кислоты, нагретой до 140°C.
  2. Лакокрасочные покрытия. Главный недостаток лакокрасочных покрытий — низкая устойчивость к перепадам температуры, механическому повреждению.
  3. Порошковые краски. Наносятся специализированным оборудованием в закрытых покрасочных камерах.
  4. Различные полимерные покрытия.

Полимерные покрытия — лучший вариант из всех предложенных. После нанесения жидкого полимера образуется прочная пленка, устойчивая к перепадам температуры, воздействию химических элементов, повышенному уровню влажности.

Легирование

К составу сплава добавляются разные легирующие добавки, которые изменяют свойства, технические характеристики материала, делают его устойчивым к разрушительному воздействию влаги.

Электрохимический метод

К металлической детали подключается источник тока. На поверхности материала образуется катодная поляризация, а ржавчина начинает разрушаться.

Покрытие металлами

Существуют разные способы покрытия металлом — термическая диффузия, металлизация, погружение в расплавленный металл, контактное осаждение.

Погружение в расплавленный металл

Специальная ванна заполняется расплавленным металлом с высокой устойчивостью к образованию коррозии. В емкость погружается деталь, которую нужно обработать.

Термическая диффузия

Термическую диффузию черных металлов чаще проводят с помощью цинка. Выполняется оно в газовой или паровой среде, при температуре до 850°C. Если обработка проходит в вакуумной среде, температура снижается до 250°C.

Металлизация

С помощью специального оборудование, которое создает мощную воздушную струю, на металлические поверхности наносится тонкий, равномерный слой расплавленного металла.

Контактное осаждение

Детали покрываются раствором солей железа или никеля. В результате обработки образуется прочная тонкая пленка. Контактное осаждение выполняется перед нанесением гальванического покрытия.

Изменение состава окружающей среды

Этот метод защиты применяется реже других. Его малая популярность связан с нестабильностью, рядом сложностей. Метод подходит только для металлоконструкций, которые находятся в закрытом помещении. Внутри можно создать подходящую атмосферу (уровень влажности, температуру), при которой развитие коррозии будет невозможно.

Способы удаления коррозии

Если ржавчина уже появилась, удалить ее можно разными способами — механическим, химическим. Также можно воспользоваться народными средствами.

Ржавый замок (Фото: pixabay.com)

Механическая очистка

Подразумевает использование абразивных инструментов. Поврежденные части будут очищаться путем трения.

Щеткой по металлу

Представляет собой классическую ручную щетку со множеством металлических волокон, которыми происходит зачистка. Подходит для частичного удаления последствий коррозии.

Наждачной бумагой

Особенности работы с наждачной бумагой:

  1. Бумага с крупными зернами применяется для грубой обработки загрязнений.
  2. Шкурка с мелкими абразивными частицами применяется для финишной обработки.

Чтобы придать материалу естественный металлических блеск, рекомендуется обработать его пастой ГОИ. Единственный недостаток работы с наждачкой без специальных инструментов — большие физические затраты.

Шлифовальной машинкой

Электроинструмент, на рабочей подошве которого закрепляется наждачная бумага. Упрощает чистку металлических поверхностей от разных загрязнений. Виды шлифовальных машинок:

  • ленточные;
  • виброшлифовальные;
  • эксцентриковые.

Виброшлифовальные подходят только для финишной обработки, а ленточные для грубой, поскольку оставляют неровности.

Гриндером

Это станок для обработки разных металлических деталей. Он имеет одну или несколько абразивных полос, который работают по примеру ленточной шлифовальной машинки. Гриндеры используются для заточки инструментов, ножей, стачивания острых граней. Степень очистки зависит от фракции абразивной ленты.

Дрелью

Чтобы удалить ржавчину и загрязнения, необходимо установить специальную насадку, похожую на ручную щетку для металла.

Дрель (Фото: pixabay.com)

Болгаркой с насадкой

Болгарка — электроинструмент, с помощью которого можно не только разрезать металлические детали, но и очищать их от коррозии, других видов загрязнений. Для этого могут использоваться два вида дисков:

  • стандартный зачистной;
  • лепестковый.

Второй вид оснастки подходит для обработки разных материалов.

Пескоструйным аппаратом

Особенности работы с данным видом оборудования:

  1. Собрать пескоструйный аппарат можно самостоятельно. Для этого понадобится компрессор, пустой баллон, соединительные элементы.
  2. Работать с пескоструем можно только в защитной экипировке. Без нее попадающая в легкие пыль может вызывать различные серьезные заболевания.
  3. Можно использовать разные виды абразивных веществ для очистки.

С помощью пескоструйного аппарата можно не только счищать загрязнения, но и изменять текстуру поверхности материала.

Химическая очистка

Такие способы очистки поверхностей менее популярны, поскольку химические вещества могут повредить материал.

Щавелевой кислотой
  1. Подготовить чистую пластиковую емкость.
  2. Смешать 250 мл теплой воды с 25 г щавелевой кислоты.
  3. Ржавую деталь положить в подготовленную жидкость.
  4. Через 30 минут смыть остатки кислоты чистой водой.
  5. Протереть поверхности сухой тряпкой.
Соляной кислотой

Работать с соляной кислотой нужно очень осторожно. Купить концентрат крайне сложно. В продаже можно найти готовые очищающие средства на основе соляной кислоты, которые уже разбавлены до нужной консистенции. Инструкция по применению находится на оборотной стороне упаковки.

Кислота (Фото: pixabay.com)

Формалином

Приготовление очищающего средства:

  1. Подготовить чистую пластиковую емкость.
  2. Смешать 250 г формалина с 50 г каустической соды, 250 мл воды и 50 мл нашатырного спирта.
  3. Размешать средство.
  4. Добавить еще 1 литр воды.
  1. Поместить деталь в раствор.
  2. Подождать 30 минут.
  3. Смыть остатки рабочего раствора чистой водой.
Молочной кислотой

Приготовление и очистка:

  1. Смешать 100 г вазелинового масла с 50 г молочной кислоты.
  2. Нанести средство на поверхности.
  3. Дождаться, когда средство начнет разъедать ржавчину.
  4. Почистить поверхности металлической щеткой.
  5. Протереть металл сухой тряпкой.

Народными средствами

Для удаления ржавчины можно использоваться не только химические вещества, но и народные средства. Они доступны любому человеку, но ими нельзя удалять серьезные загрязнения.

Кока-колой

Некоторые думают, что кока-колой можно очищать любые загрязнения — накипь из чайников, кастрюль, коррозию, но это мнение только наполовину правдиво. С помощью этого газированного напитка можно удалять ржавчину только на начальных этапах.

  1. Пропитать тряпку кока-колой.
  2. Положить ветошь на ржавое место.
  3. Подождать 3 часа.
  4. Почистить поверхность жесткой щеткой.
  5. Смыть остатки загрязнения водой.
  6. Протереть место загрязнения сухой тряпкой.
Читайте также:
Перенос рисунка на металл: простой способ травления в домашних условиях

Бутылка с колой (Фото: pixabay.com)

Содой

Приготовление чистящего раствора:

  1. Подготовить чистую пластиковую емкость.
  2. Смешать 10 л воды с 400 г соды.
  3. Перемешать компоненты.

Также понадобится металл-донор, аккумулятор, провода.

  1. Погрузить очищаемый предмет в подготовленный раствор.
  2. Подключить к заготовке минусовые провода.
  3. К детали, на которую будет переноситься ржавчина, подключить плюсовой провод.
  4. Подать напряжение.
  5. Начать обработку. Длительность процедуры может достигать 6 часов.
Уксусом
  1. Погрузить очищаемый предмет в емкость, заполненную уксусом.
  2. Оставить на сутки.
  3. Достать деталь и протереть ее поверхности жесткой щеткой.
  4. Смыть остатки грязи водой.
  5. Протереть поверхность сухой тряпкой.
Картофелем

Картофель эффективен в удалении коррозии, поскольку содержит небольшое количество щавелевой кислоты.

  1. Разрезать сырой картофель.
  2. Посыпать внутренние стороны корнеплода содой или солью.
  3. Натереть обрабатываемую деталь.

Картофель (Фото: pixabay.com)

Лимоном или лимонной кислотой
  1. Посыпать солью загрязненные поверхности.
  2. Выжать лимонный сок.
  3. Оставить получившуюся массу на 3 часа.
  4. Обработать поверхности лимонными корками.
  5. Смыть остатки водой.

Рекомендации

  1. На защите деталей лучше не экономить, и покрыть их резиновой или полимерной краской.
  2. Перед использованием абразивов нужно попробовать удалить ржавчину щадящими составами.
  3. Сложные коррозионные процессы можно останавливать с помощью агрессивных химикатов, но прежде чем их использовать, нужно изучить свойства состава, характеристики металла, чтобы предотвратить возможные негативные реакции.

Сразу после удаления ржавчины поверхности нужно покрыть защитным составом, чтобы снизить риск повторного распространения коррозии.

Коррозионные процессы могут быстро разрушить любой материал. Порча металлоконструкций в некоторых ситуациях может иметь катастрофические последствия. Изучив способы защиты от образования коррозии, нужно применить один из наиболее подходящих.

Коррозия металлов и неметалических материалов

1.4. Коррозия. Виды коррозии, методы испытаний и способы предотвращения коррозионных повреждений

(проф., д.т.н. Б.С. Ермаков)

1.4.1. Понятие коррозии, основные виды коррозионных повреждений металлов и сплавов

Коррозия (от лат. соrrosio — разъедание и corrodo — грызу) — разрушение материалов под влиянием окружающей среды в результате ее химического или электрохимического воздействия.

Обычно рассматривают коррозию металлических материалов. Однако это явление характерно не только для металлов и сплавов, аналогичные процессы происходят и в неметаллических системах, например пластмассах или керамике. Примером такого коррозионного воздействия на неметаллические материалы может служить износ футеровки плавильных печей под действием жидкого, химически активного шлака.

Ущерб, причиняемый коррозией, может быть разделен на две категории. Первая — прямые потери: затраты при ремонте оборудования, замене поврежденных элементов и т. п.; вторая — косвенные потери, связанные с простоем ремонтируемого и сопряженного с ним оборудования, ухудшением качества выпускаемой продукции в результате ее загрязнения, увеличением расхода топлива, материалов, энергии. Средние ежегодные потери, связанные с коррозионными повреждениями оборудования, для промышленно развитых стран достигают 3–10 % валового продукта. Влияние коррозионных повреждений на надежность и безопасную эксплуатацию оборудования можно проиллюстрировать следующим примером. По данным фирмы «Du Pont» (США) в 247 случаях выхода из строя оборудования этой фирмы из 313, или 79 % аварий, произошли по причине коррозионных повреждений. При этом на долю общей коррозии пришлось 31,5 % случаев, на коррозионное растрескивание (стресс-коррозию) — 21,6 % случаев, питтинговая коррозия стала причиной 15,7 % выходов оборудования из строя, а межкристаллитная коррозия явилась причиной аварий в 10,2 % случаев.

1.4.1.1. Способы классификации коррозии

Коррозию относят к поверхностным явлениям и классифицируют по тем изменениям, которые происходят с поверхностью материала в результате протекания процесса коррозии. При взаимодействии всей поверхности материала с окружающей средой наблюдается общая или сплошная коррозия, при взаимодействии части поверхности — местная или локальная коррозия. Принято различать два вида общей коррозии. При равномерной коррозии вся поверхность металла равномерно разъедается внешней средой без изменений в топографии поверхности. К такой коррозии, например, относится коррозия углеродистой стали в растворах серной кислоты (рис. 1.4.1, а) . Второй тип общей коррозии — неравномерная коррозия, когда поверхность металла под слоем продуктов коррозии носит «изрытый» характер, т. е. на поверхности возникают места более глубоких повреждений — коррозионные каверны (например, коррозия углеродистой стали в морской воде — рис. 1.4.1, б ). К неравномерной коррозии относится структурно-избирательная коррозия, когда одна из фаз или структурных составляющих сплава растворяется с большей скоростью, чем остальные, например процесс обесцинкивания латуней (рис. 1.4.1, в) .

Рис. 1.4.1. Виды коррозионных
повреждений металлов и сплавов:
ав) общая коррозия: а) равномерная коррозия,
б) неравномерная коррозия, в) избирательная коррозия;
гм) местная коррозия: г) коррозия пятнами, д) язвенная коррозия,
е) питтинговая коррозия, ж) сквозная коррозия,
з) нитевидная коррозия, и) подповерхностная коррозия,
к) межкристаллитная коррозия, л) ножевая коррозия,
м) транскристаллитное коррозионное растрескивание

Местная, или локальная, коррозия характеризуется разрушением отдельных участков поверхности материала. Местная коррозия более опасна, чем общая, т. к. при сравнительно малых потерях массы материала возможен выход из строя дорогостоящей конструкции. Местная коррозия обычно разделяется на несколько групп: коррозия пятнами, когда поверхностные размеры пятна значительно превышают глубину проникновения коррозионного дефекта (например, коррозия латуни в морской воде — рис. 1.4.1, г ); язвенная коррозия, когда размеры коррозионного повреждения на поверхности соизмеримы с глубиной повреждения (коррозия углеродистых сталей в грунте — рис. 1.4.1, д ). Точечной или питтинговой коррозией называется такой вид коррозии, при котором глубина коррозионного дефекта значительно больше его поверхностных размеров, например коррозия аустенитной хромоникелевой стали в морской воде (рис. 1.4.1, е) , в частности, к этому виду коррозии относится сквозное разъедание материала (рис. 1.4.1, ж) . К местной коррозии также относятся нитевидная коррозия, распространенная в основном в материалах с неметаллическими защитными пленками (рис. 1.4.1, з) и подповерхностная коррозия (рис. 1.4.1, и) . Этот вид коррозии начинается с поверхности материала, а затем распространяется под его поверхностью таким образом, что продукты коррозии оказываются сосредоточенными в некоторых зонах материала. Этот вид коррозии вызывает местное вспучивание материала, приводит к его расслоению. Типичным примером такого вида коррозии может служить коррозия при травлении некачественного проката.

К локальной коррозии относится также межкристаллитная коррозия (рис. 1.4.1, к) , когда коррозионные разрушения локализуются в границах зерен материала. К типичным видам этого типа коррозии относится коррозия в некоторых средах нержавеющих хромоникелевых сталей после нагревов в диапазоне температур
550–700 °С. Этот тип коррозии может быть признан наиболее опасным. Так, при одинаковой потере массы, например, в 5 мг/см 2 снижение временного сопротивления материала при общей коррозии составит примерно 10–15 %, при язвенной коррозии — до 40 %, а при межкристаллитной коррозии снижение прочности материала может достигать 80 %.

Еще одним типом местной коррозии является ножевая коррозия — локализованная коррозия металла, имеющая вид надреза острым предметом (рис. 1.4.1, л) . Обычно очаги такой коррозии обнаруживаются в зонах сплавления сварного шва в сильно агрессивных средах (например, ножевая коррозия стали 12Х18Н10 в азотной кислоте).

В условиях эксплуатации оборудования достаточно часто возникает ситуация, когда кроме коррозионных сред на материал воздействуют внешние механические нагрузки или внутренние напряжения, что приводит к повышению скорости протекания коррозионных процессов. Такой вид коррозии получил название коррозионного растрескивания или стресс-коррозии и коррозионной усталости. Такая коррозия может распространяться как по телу зерна (рис. 1.4.1, м) — транскристаллитная трещина, так и по его границам — межкристаллитная трещина.

Читайте также:
Фосфатирование металла - методы и составы

Коррозию принято классифицировать также по условиям контакта металла с агрессивной коррозионной средой. В зависимости от условий контакта различают коррозию при полном погружении, когда объект полностью погружен в агрессивный коррозионный раствор, и коррозию при неполном погружении — одним из примеров такой коррозии является коррозия по ватерлинии кораблей. Отмечают также такие виды коррозии, как коррозия при периодическом погружении и струйная коррозия.

В зависимости от того, как распространяются коррозионные трещины, коррозионные разрушения принято делить на транскристаллитные (разрушение протекает по телу зерен) и интеркристаллитные, или межкристаллитные (разрушение происходит по границам зерен).

Одним из главнейших способов классификации коррозии, который позволяет наиболее полно охарактеризовать процессы, протекающие при взаимодействии материалов и коррозионных сред, является классификация по механизму коррозионного процесса. По этому методу классификации коррозию принято делить на следующие виды: коррозия химическая, электрохимическая и биохимическая.

Химическая коррозия металлов — это процесс взаимодействия металла с коррозионной средой, при котором окисление металла и восстановление окислительного компонента коррозионной среды протекают одновременно. Продукты коррозии при этом процессе возникают непосредственно на корродирующих участках. К химической коррозии относятся газовая коррозия (окисление металла в процессе высокотемпературных нагревов, например при термической обработке) и коррозия в неэлектролитах, например в нефтепродуктах.

Электрохимическая коррозия — это процесс взаимодействия металла с коррозионной средой (раствором электролита), при котором ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают в две различные стадии, а скорости процессов на этих стадиях могут быть различны и зависимы от электродного потенциала. При этом виде коррозии одновременно протекают две реакции — анодная и катодная, локализованные на определенных участках поверхности корродирующего металла, причем участки протекания таких реакций могут меняться в процессе коррозии. К видам электрохимической коррозии относятся: атмосферная коррозия во влажной газовой или воздушной атмосфере; коррозия в жидких средах или электролитах; коррозия в расплавах солей; почвенная и подземная коррозии; электрокоррозия под действием внешнего источника тока и т. п.

Биохимическая коррозия — это процесс, связанный с воздействием на материал микроорганизмов. При этом металл может разрушаться из-за того, что он служит для этих микроорганизмов питательной средой, или из-за воздействия на металл продуктов жизнедеятельности этих микроорганизмов. В чистом виде биохимическая коррозия встречается достаточно редко, поскольку в присутствии влаги происходит также процесс электрохимической коррозии материала. Поэтому при анализе причин и экспертизе разрушения различных конструкций, поврежденных коррозией, разрушения, связанные с биохимической коррозией, обычно относят к разрушениям, связанным с электрохимической коррозией.

Одним из наиболее распространенных видов химической коррозии является газовая коррозия. Она возникает на поверхности металлов в отсутствие влаги, т. е. в условиях, когда электрохимические процессы развиться не могут. Это либо коррозия металлов в ходе их термической обработки, либо коррозия в сухих газах при нормальной температуре.

Поведение металлов при высоких температурах имеет важное практическое значение. Повреждения поверхности металлов и сплавов при термической обработке могут достигать глубин до нескольких миллиметров и приводить к значительному увеличению объема последующей механической обработки. Основным показателем, определяющим стойкость металла и сплава против окисления при высокотемпературном нагреве, является жаростойкость, т. е. способность металла сопротивляться коррозионному воздействию газа.

Первопричиной химической коррозии металлов и сплавов является их термодинамическая неустойчивость в различных средах при данных внешних условиях, т. е. самопроизвольный переход металла в более устойчивое — окисленное — состояние, которое достигается в результате реакции

за счет соответствующего уменьшения термодинамического потенциала этой системы.

Основными факторами, определяющими скорость газовой коррозии, являются температура и состав газовой среды. Влияние температуры на скорость газовой коррозии приближенно описывается уравнением Аррениуса:

lnК = AB/Т,

где К — скорость реакции (коррозии), А и В — константы, Т — температура (К).

При химическом взаимодействии углеродистых сталей с кислородом воздуха на поверхности образуется окалина — оксидная пленка, в состав которой при умеренно высоких температурах входят гематит — Fe2O3 и магнетит — Fe3O4, при более высоких температурах нагрева (более 575 °С) на поверхности раздела окалина—металл возникает еще один оксид железа — вюстит — (FeO). Одновременно с процессом окисления железа идет процесс обезуглероживания поверхности стали — Fe3C + O2 → 3Fe + CO2, в результате чего цементитная фаза «вымывается» с поверхности стали. При увеличении времени нагрева глубина обезуглероженного слоя увеличивается и может достигнуть нескольких миллиметров, что приведет к снижению прочности и твердости поверхности обрабатываемого изделия.

Кроме изменения температуры на скорость химической коррозии влияет давление газовой среды. С повышением давления скорость коррозии резко возрастает вследствие наличия в газовой среде водорода, который при повышенном давлении вызывает водородное охрупчивание стали.

Большинство металлов при взаимодействии с кислородом воздуха или другими окислителями покрываются пленкой химического соединения. Первой стадией этого процесса является адсорбция окислительного компонента среды (O2, H2O, CO2, SO2 и т. п.) на поверхности металла. В табл. 1.4.1 приведена стандартная энтальпия образования оксидов и энтальпия адсорбции кислорода на ряде металлов. Эти данные указывают на химическую природу связи между адсорбатом и адсорбентом — хемосорбцию атомов кислорода на поверхности металла. Связь, возникающая между кислородом и поверхностными атомами металла, — ионная. Она оказывается значительно сильнее, чем связь, возникающая между этими элементами в оксиде, т. к. за счет энергии поляризации на атом кислорода оказывает воздействие поле, создаваемое нижележащими атомами металла.

Энтальпии образования оксидов и адсорбции кислорода на металлах

Коррозия неметаллов

Химическая стойкость материалов неорганического и органического происхождения. Виды неорганических конструкционных материалов: силикатные, керамические, вяжущие материалы. Органические конструкционные материалы: пластмасс, каучук, резина, древесина.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 04.09.2011

Федеральное агентство по образованию

Государственное образовательное учреждение

Высшего профессионального образования

Вятский государственный университет

Кафедра технологии защиты биосферы

Реферат на тему:

по дисциплине «Химия окружающей среды»

Выполнила студентка группы ОСП-21 ________Рябчук П.В.

Проверил доцент кафедры ТЗБ ______________Фукс С.Л.

1. Химическая стойкость материалов неорганического происхождения

2. Химическая стойкость материалов органического

неорганический органический коррозия неметалл

Наряду с металлами и сплавами в промышленности широко применяются неметаллические конструкционные материалы (пластмасса, резина, керамика, стекло, клей, лакокрасочные покрытия, древесина, ткань и т.д.). Область применения неметаллических материалов расширяется все больше и больше. По мере ужесточения условий эксплуатации (повышение температуры, механических напряжений, агрессивности среды и др.) и неметаллические материалы подвержены действию среды. В связи с чем термин «коррозия» стал применяться и по отношению к этим материалам, например «коррозия бетонов и железобетонов», «коррозия пластмасс и резин». При этом имеется в виду их разрушение и потеря эксплуатационных свойств в результате химического или физико-химического взаимодействия с окружающей средой. Всё это требует знания свойств неметаллических коррозионно-стойких материалов и техники использования их при организации противокоррозионной защиты.

Область применения неметаллических материалов расширяется все больше и больше, так как помимо требований высокой химической стойкости, теплопроводности и механической прочности, неметаллические материалы должны удовлетворять и многим другим требованиям (непроницаемость для газов и жидкостей, хорошая сцепляемость футеровочных материалов и покрытий с различными материалами, хорошая обрабатываемость, небольшой вес и т.д.) Нередко приходится сочетать два или даже три неметаллических материала, чтобы удовлетворить всем предъявляемым требованиям и получить необходимый эффект.

Читайте также:
Мастика для дерева: виды, состав, характеристики, техника нанесения и изготовление

Неметаллические материалы обладают многообразием свойств: широким диапазоном величин по теплопроводности, невысокой плотностью, хорошей адгезией с металлами, стойкостью в агрессивных средах. Но большинство неметаллических материалов, особенно органического происхождения, устойчивы только до температуры 150 – 200 С, не выдерживают резких перепадов температур, плохо поддаются механической обработке.

В зависимости от их природы, неметаллические материалы подразделяются на две группы:

1. материалы неорганического происхождения (горные породы, силикатные материалы, керамика);

2. материалы органического происхождения (полимерные материалы, материалы на основе каучука, графит и его производные и т.д.).

1. Химическая стойкость материалов неорганического происхождения

Химическая стойкость материалов неорганического происхождения зависит от большого числа факторов. К этим факторам относятся: химический и минералогический состав, пористость (открытые и закрытые поры), тип структуры (аморфная, мелкокристаллическая, крупнокристаллическая), характер агрессивной среды и ее концентрация, температура, давление, перемешивание среды и др. Большинство перечисленных факторов действует в различных сочетаниях совместно, что значительно осложняет подбор соответствующего материала или покрытия.

По химическому составу материала в основном можно судить о вероятном поведении его в различных агрессивных средах. К кислотостойким материалам следует отнести те, в которых преобладают нерастворимые или труднорастворимые кислотные окислы – кремнезем, низкоосновные силикаты и алюмосиликаты. Так, например, сложные алюмосиликаты обладают повышенной кислотостойкостью вследствие высокого содержания в них кремнезема, нерастворимого во всех кислотах, за исключением плавиковой. В то же время гидратированные алюмосиликаты типа каолина не обладают кислотостойкостью, так как кислотные окислы входят в них в виде гидратов. Чем выше содержание кремнезема в материалах неорганического происхождения, как в природных, так и в искусственных, тем выше их кислотостойкость. Так, например, почти абсолютной кислотостойкостью обладают кварциты, изделия из плавленого кварца, содержащие почти 100% SiO2 . Материалы, содержащие основные окислы, не являются кислотостойкими и разрушаются при действии минеральных кислот, но обладают стойкостью в щелочах, как, например, известняки или магнезиты и обычные строительные цементы. 4

Не меньшее значение имеет и минералогический состав материала неорганического происхождения, количество отдельных его составляющих и их свойства. Так, например, природные горные породы, являющиеся во многих случаях полиминералами, вследствие различия коэффициентов термического расширения их отдельных составляющих склонны к растрескиванию при резких перепадах температуры; в частности, содержание значительных количеств слюды в гранитах может вызвать их расслаивание. Следует также учитывать, какими веществами сцементированы материалы неорганического происхождения. Так, например, некоторые песчаники, содержащие большие количества кварца и сцементированные аморфным кремнеземом, обладают большей кислотостойкостью, чем песчаники, сцементированные известью или другими карбонатными минералами.

Разрушение материалов неорганического происхождения иногда имеет место вследствие пористости материала. Разрушение пористых материалов вызывается в основном возникновением в материале напряжений вследствие кристаллизации в порах солей, отложения в них продуктов коррозии или вследствие замерзания в порах воды. При полном заполнении объема пор и вследствие отсутствия возможности расширения механическое разрушение материала неизбежно. Кристаллизация солей в открытых порах строительных материалов (бетонов, цементов и т.д.) чаще всего наблюдается в сухом и жарком климате, при соприкосновении деталей сооружений с засоленными грунтами. Содержащаяся в последних влага интенсивно испаряется. Соли, которые осаждаются на строительных материалах, постепенно заполняют поры. Развивающееся в этих условиях кристаллизационное давление может достигнуть 0,44 Мн/м2. Химическая стойкость материала зависит также от его структуры. При кристаллической структуре материала его стойкость выше, чем при аморфной.

К неорганическим конструкционным материалам относятся:

· природные кислотостойкие силикатные материалы

1. Граниты (состоят из 70-75% SiO2, 13-15% Al2O3, 7-10% оксидов магния, кальция, натрия; термостойкость до 250С).

Помимо использования его в строительстве, из него изготавливают корпуса электрофильтров, поглотительные башни в производстве азотной и соляной кислот, аппараты бромного и йодного производства.

2. Бештауниты (состоят из 60-70% SiO2; они тверды, тугоплавки, термостойкость до 800С). Бештауниты используют как футеровочный материал для аппаратов, применяемых при получении минеральных кислот.

3. Андезиты (состоят из 59-62% SiO2; хорошо поддаются механической обработке, но не прочны). Применяется как наполнитель в кислотостойких цементах и бетонах.

4. Асбест (3MgOЧ2SiO2*2pO; огнестоек). Используется как вспомогательный материал в виде нитей, фильтрующей ткани, наполнителя, для изоляции корпусов аппаратов.

· Искусственные силикатные материалы

1. Каменное литье (представляет собой плавленые материалы, имеющие кристаллическое строение; получаю путем плавления горных пород с добавками при 1400 -1450С и последующей термической обработке отлитых изделий). Каменное литье характеризуется высокой химической стойкостью, механической прочностью, большим сопротивлением истиранию, применяется при температурах не выше 150С.

2. Силикатное стекло (в основе SiO2 (65-75%), в качестве добавок оксиды щелочных и щелочноземельных металлов). Обладает высокой прозрачностью, хорошей механической прочностью, низкой теплопроводностью, стойкостью к воздействию химических реагентов. Широко применяется в качестве конструкционного и футеровочного материала. Из него изготовляют холодильники со змеевиками, ректификационные колонны, отдельные элементы аппаратуры.

3. Термостойкое стекло (63,3% SiO2; 5,5% Al2O3; 13,0% СаО; 4,0% MgO; 2,0% NaO; 2,0% F). Имеет термоустойчивость до 1000 – 1100С, выдерживает давление до 4,5 – 5,0 МПа, прочность на изгиб 600 – 800кг/см2.

4. Алюмомагнезиальное стекло (71% SiO2;3% Al2O3; 3,5% СаО; 2,5% MgO; 1,5% К2О; 13-15% Na2O). Используется для изготовления стойких фильтрующих тканей. На алюмомагнезиальное стекло при 80 – 100С слабое воздействие оказывает соляная кислота, более сильное – серная.

5. Кварцевое стекло получают путем плавления наиболее чистых природных разновидностей кристаллического кварца, горного хрусталя, жильного кварца или кварцевого песка с содержанием 98 -99% SiO2. Кварцевое стекло устойчиво по отношению ко всем кислотам любых концентраций при высоких температурах (исключение – плавиковая кислота при комнатной температуре и фосфорная при температуре выше 250С), пропускает УФ и ИК лучи, газонепроницаемо до 1300С. Изделия из него выдерживают длительное время при температуре 1100 – 1200С.

6. Ситаллы – стеклокристаллические материалы, полученные при определенных условиях кристаллизации стекол. Они в 5 раз прочнее обычного стекла, термостойки до 1000С, хорошо сопротивляются абразивному износу.

· Керамические материалы

1. Кислотоупорная эмаль представляет собой стеклообразную массу, получаемую сплавлением горных пород (кварцевый песок, глина, мел) с плавнями (бура, сода, поташ) при высоких температурах. Кроме того в состав эмалей входят оксиды NiO, CaO, TiO2, ZrO2, SnO2, Cr2O3 и др. Эмаль очень устойчива в кислотах, изделия с эмалевыми покрытиями работают в жидких средах до 200С, в газообразных до 600 – 700С.

2. Фарфор – тонкокристаллический материал, непроницаемый для воды и газов. Фарфор кислотостоек, тверд, износостоек, выдерживает резкие перепады температур, имеет низкую пористость.

· Вяжущие материалы

1. Цемент содержит в своем составе тонкоизмельченный кислото- или щелочностойкий наполнитель.

2. Бетон – твердое камневидное тело. Его получают из бетонной смеси – цемент, вода и наполнитнль (гравий, щебень, кварцевый песок и т.д.) Имеют невысокую прочность при растяжении и изгибе, для устранения этого недостатка бетон армируют стальной арматурой. Такой материал – железобетон.

Читайте также:
Политура для дерева: разнообразие видов и подробная технология нанесения

2. Химическая стойкость материалов органического происхождения

Химическая стойкость материалов на органической основе как и другие их свойства, зависит от химического состава, молекулярного веса, от величины и характера межмолекулярных сил, строения и структурных факторов. Старению (деструкции) подвержены почти все органические материалы. Вызывают деструкцию механические нагрузки, тепло, свет, вода, кислород, ультразвук, окислительные среды и др.

К органическим конструкционным материалам относятся:

1. Пластические массы – синтетические материалы, получаемые на основе органических и элементоорганических полимеров. Свойства пластмасс определяются свойствами полимеров, составляющих его основу.

1. Полиэтилен – термопластичный полимер, устойчив к действию щелочей, кислот, на холоде не растворим ни в одном растворителе.

2. Полипропилен, более прочен, чем полиэтилен; может длительно работать под нагрузкой при 100С, морозостоек, обладает высокой стойкостью в кислотах, органических растворителях, минеральных и растительных маслах.

3. Винипласт – стоек почти во всех кислотах, щелочах, растворах солей, органических растворителях. Имеет низкую ударную вязкость, низкий предел рабочей температуры, быстро деформируется под нагрузками.

4. Полистирол – твердый материал, устойчив к воздействию растворов кислот, щелочей, светостоек.

5. Фторопласты имеют высокую химическую стойкость, незаменимы как антикоррозийные материалы.

6. Фаолит изготавливают на основе резольной смолы и асбеста. Стоек в кислотах, растворах солей, в атмосфере газов.

7. Стекловолокниты – прочный, устойчивый к вибрационным нагрузкам материал, стоек к действию агрессивных сред.

8. Эпоксидные смолы имеют хорошую адгезию к металлу, и после отверждения становится устойчивым к действию щелочей, бензина, ацетона, кислот.

2. Каучуки и резины

Каучуки являются полимерами с линейной структурой. При вулканизации превращаются в высокоэластичные резины. Резина состоит из смеси каучука (основа), наполнителя (сажа, оксид кремния, оксид титана, мел, барит, тальк), смягчителя (канифоль, вазелин), противостарителя (парафин, воск) и агентов вулканизации (сера, оксид цинка). Резина имеет высокие эластические свойства, упругость, сопротивляемость разрыву, стойкость против истирания, химическую стойкость.

3. Графитовые материалы обладают высокой химической стойкостью и теплопроводностью.

4. Древесина – ценнейшее промышленное сырье. Обладает такими ценными качествами, как легкость обработки резанием и окончательной доводки поверхности изделия. Древесина, независимо от породы, имеет в основном высокую долговечность, если находится в сухом, проветриваемом помещении с незначительным перепадом температуры и влажности воздуха. На долговечность древесины влияют условия, в которых она находится, а так же биологические факторы (паразитирующие грибки, насекомые и микроорганизмы), физические факторы (перепады температуры, влажность воздуха, удары), химические факторы (концентрированные растворы кислот или спиртов).

Неметаллические материалы в качестве конструкционных материалов служат важным дополнением к металлам, в ряде случаев с успехом заменяют их, а иногда неметаллические материалы сами являются незаменимыми. Достоинством неметаллических материалов является сочетание требуемого уровня химических, физических и механических свойств с низкой стоимостью и высокой технологичностью при изготовлении изделий сложной конфигурации. Трудоемкость при изготовлении изделий из неметаллических материалов в 5-6 раз ниже, и они в 4-5 раз дешевле по сравнению с металлическими. В связи с этим непрерывно возрастает использование неметаллических материалов в машиностроении, автомобилестроении, авиационной, пищевой, холодильной и криогенной технике и др.

Библиографический список

1. Семенова И.В., Флорианович Г.М., Хорошилов А.В. Коррозия и защита от коррозии. М: ФИЗМАТЛИТ, 2006 год.

2. Солнцев Ю.П., Пряхин Е.И. Материаловедение: учебник для вузов. СПб.: ХИМИЗДАТ, 2004 год.

3. Воробьева Г.Я. Коррозионная стойкость материалов в агрессивных средах химических производств. М: Изд-во «Химия», 1967 год.

4. Клинов И.Я. Коррозия химической аппаратуры и коррозионностойкие материалы. М: Изд-во «Машиностроение», 1967 год.

Подобные документы

Процессы разрушения металлов в результате взаимодействия с окружающей средой, виды коррозионных разрушений. Процесс химической коррозии. Электрохимическая коррозия под действием внутренних макро- и микрогальванических пар. 3ащита металлов от коррозии.

реферат [303,4 K], добавлен 16.10.2011

Актуальность и история разработки геополимерных вяжущих материалов, их виды, характеристики. Оценка биопозитивности геополимерных вяжущих на основе низкокальциевой золы-уноса. Геополимерные материалы из горных пород, активизированные добавками шлака.

реферат [1,2 M], добавлен 31.03.2015

Теоретические аспекты методов. Сущность испытаний материалов на стойкость к микроскопическим грибам и к бактериям. Особенности измерения интенсивности биолюминесценции и индекса токсичности. Главные параметры оценки биостойкости строительных материалов.

реферат [211,0 K], добавлен 13.01.2015

Строение полимеров и сферы их использования. Производство синтетических тканей. Поиск и создание материалов-заместителей. Перспективные направления использования материалов с необычными свойствами. Тонкопленочные материалы для накопителей информации.

контрольная работа [25,0 K], добавлен 06.11.2011

Химическая коррозия металлов, протекающая в коррозионных средах, не проводящих электрический ток. Поведение металлов при высоких температурах. Процесс появления на поверхности оксидной пленки, его стадии. Химическая коррозия в жидкостях – неэлектролитах.

реферат [27,2 K], добавлен 03.11.2015

Натуральный каучук. История открытия натурального каучука. Природные каучуконосы. Сбор латекса и производство натурального каучука. Физические и химические свойства натурального каучука. Состав и строение натурального каучука. Синтетический каучук. Резина

доклад [27,7 K], добавлен 06.02.2006

Полиэтилен, пластмассы, поролон – искусственные (синтетические) материалы, созданные человеком с помощью науки химии. Использование пластмасс для создания защитного покрова на металлических электропроводах. Материалы для изготовления защитных костюмов.

презентация [1,8 M], добавлен 29.01.2014

О термине “сверхчистые материалы”. Методы классификации материалов особой чистоты. Получение чистых цветных металлов. Спутники цветных металлов в рудах. Ионный обмен. Применение химических методов очистки материалов взамен физических.

реферат [210,5 K], добавлен 27.02.2003

Значение использования прогрессивных видов композиционных материалов, формовочные композиционные материалы с определенными свойствами. Физико-механические свойства полибутилентерефталата, модифицированного высокодисперсной смесью железа и его оксидом.

статья [35,6 K], добавлен 03.03.2010

История открытия адсорбционной способности древесных углей. Основные принципы активирования углеродсодержащего сырья. Природные горючие материалы: древесина, торфяной кокс, скорлупа орехов, синтетические материалы. Области применения активного угля.

реферат [38,4 K], добавлен 08.02.2011

Коррозия и виды коррозии

Термин коррозия происходит от латинского «corrosio», что означает разъедать, разрушать. Этот термин характеризует как процесс разрушения, так и результат.

Среда, в которой металл подвергается коррозии (коррозирует) называется коррозионной или агрессивной средой.

В случае с металлами, говоря об их коррозии, имеют в виду нежелательный процесс взаимодействия металла со средой. Физико-химическая сущность изменений, которые претерпевает металл при коррозии является окисление металла.

Любой коррозионный процесс является многостадийным:

  1. Необходим подвод коррозионной среды или отдельных ее компонентов к поверхности металла.
  2. Взаимодействие среды с металлом.
  3. Полный или частичный отвод продуктов от поверхности металла (в объем жидкости, если среда жидкая).

Коррозионный процесс является самопроизвольным, следовательно G=G-G (G и G относятся к начальному и конечному состоянию соответственно). Если G>G то G 0 коррозионный процесс невозможен; G=0 система металл-продукт находится в равновесии. То есть можно сказать, что первопричиной коррозии металла является термодинамическая неустойчивость металлов в заданной среде.

1. Классификация коррозионных процессов.

  1. По механизму процесса различают химическую и электрохимическую коррозию металла.Химическая коррозия — это взаимодействие металлов с коррозионной средой, при котором окисляется металл и восстанавливается окислительные компоненты коррозионной среды протекают в одном акте. Так протекает окисление большинства металлов в газовых средах содержащих окислитель (например, окисление в воздухе при повышении температуры).Электрохимическая коррозия — это взаимодействие металла с коррозионной средой, при котором ионизация атомов металла и восстановление окислительной компоненты среды происходит не водном акте, и их скорости зависят от электродного потенциала металла. По такому процессу протекают, например, взаимодействие металла с кислотами.
  2. По характеру коррозионного разрушения.Общая или сплошная коррозия при которой коррозирует вся поверхность металла. Она соответственно делится на равномерную (1а), не равномерную (1б) и избирательную (1в), при которой коррозионный процесс распространяется преимущественно по какой-либо структурной составляющей сплава.Местная коррозия при которой коррозируют определенные участки металла:
    1. коррозия язвами — коррозионные разрушения в виде отдельных средних и больших пятен (коррозия латуни в морской воде)
    2. межкристаллическая коррозия при ней процесс коррозии распространяется по границе металл-сплав (алюминий сплавляется с хромоникелем) и другие виды коррозии.
  3. По условиям протекания процесса.
    1. Газовая коррозия — это коррозия в газовой среде при высоких температурах. (жидкий металл, при горячей прокатке, штамповке и др.)
    2. Атмосферная коррозия — это коррозия металла в естественной атмосфере или атмосфере цеха (ржавление кровли, коррозия обшивки самолета).
    3. Жидкостная коррозия — это коррозия в жидких средах: как в растворах электролитов, так и в растворах не электролитов.
    4. Подземная коррозия — это коррозия металла в почве
    5. Структурная коррозия — коррозия из-за структурной неоднородности металла.
    6. Микробиологическая коррозия — результат действия бактерий
    7. Коррозия внешним током — воздействие внешнего источника тока (анодное или катодное заземление)
    8. Коррозия блуждающими токами — прохождение тока по непредусмотренным путям по проекту.
    9. Контактная коррозия — сопряжение разнородных электрохимических металлов в электропроводящей среде.
    10. Коррозия под напряжением — одновременное воздействие коррозионной среды и механического напряжения.
Читайте также:
Как сделать жидкое стекло для машины своими руками: два лучших способа

1.2 Показатель скорости коррозии.

Для установления скорости коррозии металла в данной среде обычно ведут наблюдения за изменением во времени какой-либо характеристики, объективно отражающей изменение свойства металла.

Чаще всего в коррозионной практике используют следующие показатели.

  1. Показатель изменения массы — изменение массы образца в результате коррозии отнесенный к единице поверхности металла S и к единице времени (например, г/м ч) в зависимости от условий коррозии различают:
    1. отрицательный показатель изменения массы
    2. положительный показатель изменения массы
  2. Объемный показатель коррозииПрименительно к электрохимической коррозии когда процесс катодной деполяризации осуществляется за счет разряда ионов водорода, например, по схеме 2Н + 2е = Н, или ионизация молекул кислорода О + 4е +2НО = 4ОН; вводятся соответственно кислородный (К ) и водородный (К ) показатель соответственно.Водородный показатель коррозии — это объем выделившегося Н в процессе коррозии, отнесенный к Su .

    Кислородный показатель коррозии — это объем поглощенного в процессе О , отнесенный к Su .
    Показатель сопротивления.Изменение электрического сопротивления образца металла за определенное время испытаний также может быть использован в качестве показания коррозии (К).КR = ( R/Ro)100% за время t

    где Ro и R электрическое сопротивление образца соответственно до и после коррозии.

    У этого способа есть некоторый недостаток толщина металла во все время испытаний должна быть одинаковой и по этой причине чаще всего определяют удельное сопротивление, т.е. изменение электрического сопротивления на единицу площади образца (см, мм) при длине равной единице. Этот метод имеет ограничения применения (для листового металла не более 3мм). Наиболее точные данные получают для проволочных образцов. Этот метод не пригоден для сварных соединений.

  3. Механический показатель коррозии.Изменение какого-либо свойства металла за время коррозии . Сравнительно часто пользуются изменением предела прочности.Глубина коррозионного разрушения может быть средней или максимальной. Глубинный показатель коррозии можно использовать для характеристики как равномерной., так и неравномерной коррозии (в том числе и местной) металлов. Он удобен для сравнения скорости коррозии металла с различными плотностями. Переход от массового, токового и объемного к глубинному возможен при равномерной коррозии.

2. Электрохимическая коррозия.

Электрохимическая коррозия является наиболее распространенным типом коррозии металлов. По электрохимическому механизму коррозируют металлы в контакте с растворами электролитов (морская вода, растворы кислот, щелочей, солей) . В обычных атмосферных условиях и в земле металлы коррозируют также по электрохимическому механизму , т.к. на их поверхности имеются капли влаги с растворенными компонентами воздуха и земли. Электрохимическая коррозия является гетерогенным и многостадийным процессом. Ее причиной является термодинамическая неустойчивость металлов в данной коррозионной среде.

Термодинамика электрохимической коррозии металлов.

Стремлением металлов переходить из металлического состояния в ионное для различных металлов различно. Вероятность такого перехода зависит также от природы коррозионной среды. Такую вероятность можно выразить уменьшением свободной энергии при протекании реакции перехода в заданной среде при определенных условиях.

Следовательно, для электрохимического растворения металла необходимо присутствие в растворе окислителя (деполяризатора, который бы осуществлял катодную реакцию ассимиляции электронов), обратимый окислительно-восстановительный потенциал которого положительнее обратимого потенциала металла в данных условиях.

Катодные процессы при электрохимической коррозии могут осуществляться различными веществами.

  1. ионами
  2. молекулами
  3. оксидами и гидрооксидами (как правило малорастворимыми продуктами коррозии, образованными на поверхности металлов)
  4. органическими соединениями

В коррозионной практике в качестве окислителей-деполяризаторов, осуществляющих коррозию, выступают ионы водорода и молекулы растворенного в электролите кислорода.

При увеличении активности ионов металла (повышение концентрации ионов металла в растворе), потенциал анода возрастает, что приводит к торможению растворения металла. Понижение активности металла, напротив, способствует растворению металла. В ходе коррозионного процесса изменяются не только свойства металлической поверхности, но и контактирующего раствора (изменение концентрации отдельных его компонентов). При уменьшении, например, концентрации деполяризатора, у катодной зоны может оказаться, что катодная реакция деполяризации термодинамически невозможна.

Гомогенные и гетерогенные пути электрохимической коррозии.

Причину коррозии металлов в растворах, не содержащих одноименных ионов, объясняет теория необратимых потенциалов. Эта теория рассматривает поверхность металлов как однородную, гомогенную. Основной и единственной причиной растворения (коррозии) таких металлов является термодинамическая возможность протекания анодного и катодного актов. Скорость растворения (коррозии) будет определяться кинетическими факторами. Но гомогенную поверхность металлов можно рассматривать как предельный случай, который может быть реализован, например, в жидких металлах. (ртуть и амальгамы металлов). Для твердых металлов такое допущение будет ошибочным, хотя бы потому что различные атомы сплава (и чистого металла) занимают различное положение в кристаллической решетке. Наиболее сильное отклонение от гомогенной конструкции будет наблюдаться при наличии в металле инородных включений, интерметаллидов, границ зерен и т.д. В этом случае, разумеется, поверхность является гетерогенной. Установлено, что даже при наличии на поверхности металла неоднородностей в целом поверхность остается эквипотенциальной.

Таким образом, неоднородность поверхностей сплава не может являться основной причиной общей коррозии металла. Наиболее существенной в подобных случаях является ионизация растворения анодной составляющей вблизи катодной составляющей, это возможно, если на поверхности металлической конструкции возникают гальванические элементы. Рассмотрим некоторые из них:

а) неоднородность металлической фазы, обусловленная неоднородностью сплава, а также в результате микро и макровключений.

б) неоднородность поверхности металла в следствие наличия границ блоков и зерен кристаллов, выход дислокаций на поверхность, анизотропность кристаллов.

в), г) неоднородность защитных пленок на поверхности за счет микро и макропор пленки (в), за счет неравномерного образования на поверхности вторичных продуктов коррозии (г) и др.

Мы рассмотрели два крайних механизма саморастворения металлов: равномерное растворение идеально гомогенной поверхности и растворения (в основном локальное) микроэлементов при пространственном разделении катодных и анодных зон (процессов).

В общем случае, необходимо считаться с возможностью протекания на анодных участках наряду с основными анодными процессами катодных процессов, на катодных же участках могут протекать с пониженной скоростью анодные процессы растворения.

Можно сделать вывод, что нет оснований противопоставлять «гомогенный» и «гетерогенный» пути протекания коррозионных процессов. Правильнее будет их рассматривать как факторы, взаимно дополняющие друг друга. Основной же причиной коррозии металлов остается по-прежнему термодинамическая вероятность протекания в данных условиях на металле анодных процессов ионизации металла и сопряженного с ним катодного процесса деполяризации.

Анодные процессы при электрохимической коррозии металлов.

Для протекания коррозионного процесса существенным является состояние форма соединения , в котором находится катион металла в растворе. Ионизация металла с последующим переходом в раствор простых компонентов металла представляет лишь одно из возможных направлений анодных процессов. Форма их конкретного состояния во многом определяется как природой металла и контактирующей с ним средой , так и направлением и величиной поляризующего тока (или электродного потенциала). Переходя в раствор, коррозирующий металл вступает в связь либо с растворителем, либо с компонентами раствора. При этом могут образовываться простые и комплексные соединения с различной растворимостью и с различной адгезией к поверхности металла. При высоких положительных значениях потенциала на аноде возможен процесс окисления воды с выделением кислорода. В зависимости от того, какие процессы или их сочетания протекают на аноде, они могут в значительной мере (а иногда и полностью) контролировать суммарный процесс коррозии.

Причины анодного растворения металлов.

Простейшими анодными реакциями являются такие , в результате которых образуются растворимые гидратированные и комплексные катионы,. которые отводятся от анода путем диффузии, миграции (перенос за счет электрического поля) или конвекции.

Полярные молекулы жидкости электростатически взаимодействуют с заряженными ионами, образуют сольватные (в случае воды-гидратные) комплексы. Обладающие значительно меньшим запасом энергии чем ионы в кристаллической решетки металла. Величину этого понижения можно оценить, исходя из соображений предложенных Борном. Полный электрический заряд в вакууме обладает энергией, равной потенциальной энергии. Для определения величины энергии заряда представим, что проводящая сфера радиусом r имеет заряд q. Внесение еще одной части заряда dq в сферу должно быть встречено отталкивающими силами df=qdq/r. Поистине огромное уменьшение энергии иона в водном растворе указывает на устойчивость такого состояния в нем. Таким образом, причиной перехода атомов металла с поверхности и их ионизация является электростатическое взаимодействие (сольватация) ионов металла с полярными молекулами растворителя.

Анодная пассивность металлов.

При значительном торможении анодной реакции ионизации металла скорость коррозионного процесса может понизится на несколько порядков. Такое состояние металла принято называть анодной пассивностью. Пассивность можно определить следующим образом: пассивность — состояние повышенной коррозионной устойчивости металла или сплава (в условиях, когда термодинамически он является реакционно способным), Вызванное преимущественным торможением анодного процесса т.е. может произойти так, что в реальных условиях скорость коррозии «активных» элементов оказывается весьма незначительной в следствии наступления пассивного состояния. Например, титан расположенный левее цинка, и хром, расположенный рядом с цинком, в следствии наступления пассивности оказываются более коррозионностойкими в большинстве водных сред, чем цинк. На склонность к пассивному состоянию влияет природа системы металл-раствор. Наибольшую склонность к переходу в пассивное состояние проявляют Ti,Ni,Al,Mg,Fe,Co и др.

Наступление пассивного состояния приводит к значительному изменению формы анодной поляризационной кривой. Кривая может быть разбита на несколько характерных участков:

Но начиная с В становится возможным процесс образования защитного слоя (фазового или адсорбционного), скорость которого растет при смещении потенциала в положительную сторону. Это приводит к торможению анодного растворения (BD). В точке D, соответствующей потенциалу ( потенциал начала пассивации) скорость образования защитного слоя равна скорости его растворения. Далее идет рост защитного слоя, экранирующего поверхность, скорость анодного растворения резко понижается (DE). В точке Е, соответствующей потенциалу полной пассивации металл оказывается в пассивном состоянии. На участке EF (область пассивного состояния) скорость анодного процесса не зависит от потенциала, а определяется скоростью химического растворения защитной пленки. Ток соответствующий области пассивного состояния, называется током пассивного состояния (i ). Положительнее F возможна ( -потенциал перепассивации) новая ветвь активного растворения с образованием катионов более высокой валентности.

При высоких положительных потенциалах возможен локализованный пробой оксидной пленки — металл начинает растворятся по типу питтинга (PP’) называют потенциалом питтингообразования.

Металл запассивированный в данной среде, может сохраняться в пассивном состоянии некоторое время в непассивирующей среде.

3. Деполяризация.

При наличии в растворе газообразного кислорода и не возможностью протекания процесса коррозии с водородной деполяризацией основную роль деполяризатора исполняет кислород коррозионные процессы, у которых катодная деполяризация осуществляется растворенным в электролите кислородом, называют процессами коррозии металлов с кислородной деполяризацией. Это наиболее распространенный тип коррозии металла в воде, в нейтральных и даже в слабокислых солевых растворах, в морской воде, в земле, в атмосфере воздуха.

Коррозия металла с кислородной деполяризацией в большинстве практических случаев происходит в электролитах, соприкасающихся с атмосферой, парциальное давление кислорода в которой Р=0,21 атм. Следовательно, при определении термодинамической возможности протекания коррозионного процесса с кислородной деполяризацией следует производить учитывая реальное парциальное давление кислорода в воздухе (см. табл.). Т.к. значения (V ) очень положительны, то условия соблюдаются в очень многих случаях. В следующей таблице приведены значения ЭДС и изменения изобарно-изотермических потенциалов коррозионных процессов с кислородной деполяризацией:

Изучение восстановления кислорода на неблагородных металлах (а именно они представляют наибольший интерес с точки зрения коррозии) затрудняется тем, что при катодной поляризации электрода металл может иметь потенциал более положительный, чем равновесный и, следовательно, подвергается окислению (ионизации).

При катодной поляризации в определенном интервале потенциалов будут происходить одновременно два процесса восстановление кислорода и окисление металла. Окисление металла прекратится когда потенциал металла будет равен или станет отрицательнее равновесного потенциала металла. Эти обстоятельства затрудняют изучение процессов кислородной деполяризации.

Коррозия металлов. Все виды особенности и факты

Коррозия — разрушительный процесс, который пагубно влияет на металлические конструкции. Процесс может иметь как химические, так и химико-физические причины. Чаще всего причиной возникновения таких проблем является неустойчивость материала к воздействию внешних факторов, чаще всего термодинамического характера.

Чаще всего ржавчина прогрессирует исключительно в верхних слоях материала, но иногда проникает и вглубь.

Виды коррозийных процессов

Коррозия металлов имеет большое количество разновидностей. Но в основном все виды подразделяются на два основных типа:

  1. Коррозия общего характера. Она называется равномерной, а встречается чаще всего. Причиной возникновения такой коррозии считаются химические и электрохимические реакции. Такая разновидность коррозии приводит к отрицательному воздействию на всю поверхность материала и металлической конструкции. При этом процесс может быть равномерным или неравномерным. При неравномерном распределении ржавчины, она на одном участке разъедает материала быстрее и сильнее, чем на соседнем.
  2. Местный вид коррозии. Возникает на одном участке, где и развивается.
  3. Местная пятнами. Возникает на отдельных участках материала.
  4. Язвенная, ее еще называют питтинг.
  5. Межкристаллитная — такая коррозия возникает на пограничных областях металлического кристалла. Чаще вспыхивает в тех материалах, которые содержат в составе никель и алюминий. Металл в кратчайшие сроки остается без первоначальных показателей прочности и эластичности.
  6. Растрескивающая.
  7. Подповерхностная.
  8. Коррозия под током — возникает под воздействием блуждающего или постоянного тока.
  9. Коррозийная кавитация — вариант разрушений, когда помимо ржавчины на металл воздействует и ударная сила.
  10. Фреттинг-коррозия — одновременное воздействие ржавчины и вибрации, которые совместно приводят к разрушению металлических конструкций. варианты.

Есть еще различия и по механизму воздействия.

Химический вариант разрушения

Это разновидность процесса, при котором рушатся связи металлические, а между атомами веществ материала и окислителей возникает химическая взаимодействие. В такой ситуации не образуется электрический ток между различными областями материала. В свою очередь такой вид разрушения подразделяется еще на два типа:

  1. Газовый вариант. Получается при воздействии агрессивных азов, а также паров в сочетании с высокими показателями температуры. Если материал относится к активным, то воздействие таких сред может привести к окончательному разрушению материала по всей поверхности. К таким средам относятся: сероводород, диоксид серы, пары воды, кислород. Такой вид разрушительного процесса чаще всего заметен в промышленности и на химическом производстве.
  2. Жидкостный вариант ржавчины. Случается в неэлектролитических веществах. Если имеется даже небольшое содержание жидкости, то процесс становится электрохимическим.

Важно, что при химической разновидности коррозии металл разрушается со скоростью протекания химической реакции.

Электрохимическая ржавчина

Этот вариант разрушительных процессов возникает в среде электролитов. Процесс сочетается с возникновением тока. В итоге из решетки вещества убирается атом и одновременно протекают два процесса:

  1. Анодный — вещество материала в качестве ионов входит в раствор.
  2. Катодный — те вещества, которые получаются в предыдущем процессе, связываются при помощи деполяризатора.

Собственно отвод электродов так и называется — деполяризация, а непосредственно вещества, которые способствуют данному процессу именуются деполяризаторами.

Наиболее часто возможно встретить вариант разрушения с водородной и кислородной деполяризацией.

Разновидность металлов по отношению к коррозии электрохимического вида

Все металлы по отношению к такому виду ржавчины делятся на 4 подтипа:

  1. Активные вещества или материалы с высокими параметрами термодинамической нестабильности. Это все щелочные виды металлов. Они подвержены влиянию коррозии даже в абсолютно нейтральных средах, где нет кислорода и других окислительных веществ.
  2. Средние материалы по уровню активности — в таблице Менделеева расположены между кадмием и водородом. Это материалы отличающиеся термодинамической нестабильностью в агрессивных кислых средах.
  3. Материалы с низкими параметрами активности или вещества с промежуточными параметрами стабильности по термодинамике. Противостоят коррозии в кислых и нейтральных атмосферах, при отсутствии кислорода.
  4. Благородные разновидности веществ. Это материалы с высокой стабильностью. Они поддаются коррозии только в кислых средах и в присутствии сильнейших окислителей.

Такие типы ржавчины могут разделяться по видам агрессивных сред, в которой она протекает:

  1. Процесс в электролитных веществах — процесс протекает в жидких кислых, щелочных средах, а также в простой воде.
  2. Атмосферный вид — любой газовый вариант с наличием влажности. Это очень распространенный вариант электрохимического разрушения металла. Главное, чтобы в данной среде была влажность. Только при таких условиях есть возможность протекания необходимых реакций.

При электрохимической вариации процесса одна часть металла служит анодом, а другая — катодом. Последним становятся те участки металла, куда больше поступает кислорода.

В зависимости от воздействующих сред есть и другие разновидности коррозий:

  1. Почвенная — протекает с разной степенью интенсивности. Все зависит от агрессивности почвы. В таких условиях происходит подземные разрушительные процессы на трубах и прочих подземных конструкциях.
  2. Аэрационная — причиной служит неравномерный приток воздуха к разным участкам материала.
  3. Морская — процесс проходит строго в соленой воде.
  4. Биокоррозия — результат жизнедеятельности бактерий и микроорганизмов. Они выделяют газы, которые и приводят к возникновению разрушительных процессов.
  5. Электрокоррозия — является результатом воздействия блуждающего тока.

Кроме того основные виды коррозии могут различаться в зависимости от типа металла, на которых они возникают.

Разрушительные процессы на меди

Медь считается достаточно стабильным металлом. Ее стабильность замечена в следующих средах:

  1. Атмосфера.
  2. Морская и пресная вода.
  3. Галогеновые среды со специальными условиями.
  4. В кислотах-неокислителях.

При этом медные конструкции отличаются нестабильностью в следующих условиях:

  1. При контакте с соединениями серы, а также с самой серой в чистом виде.
  2. При погружении в растворы солей-окислителей.
  3. В агрессивной воде.

Также часто встречается и атмосферная коррозия меди.

Ржавление железа

Еще один популярный элемент, который часто подвергается действию ржавчины — железо. Чаще всего железо подвергается разрушительным процессам в результате контакта с воздухом или кислотным раствором.

Способы защиты от коррозии металлов

Используется несколько основных методов по защите металлических конструкций от разрушительного воздействия коррозии. При использовании защиты в основном делается упор на то, что ржавчина без внешних повреждений не может проникнуть к металлу.

При этом важно, что защитные покрытия выполняют не только предохраняющую функцию, но и придают металлическим конструкциям симпатичный внешний вид.

Прежде всего, это покрытия, которые разделяются на три типа, по материалам нанесения:

  1. Металлические.
  2. Неметаллические.
  3. Химические.

Каждый из них имеет свои особенности и преимущества.

Металлические покрытия. Это способ, при котором на металлическую конструкцию наносят тонким слоем другой вид металла, который более стабилен к разрушительному действию коррозии при аналогичных условиях.

Покрытие может называться анодным или катодным в зависимости от того более активный или менее активный металл сверху.

Неметаллические покрытия. Они подразделяются на органические и неорганические. Чаще всего используется высокополимерный пластик, стекло и керамика. Из органических известны и популярны лаки, битум, краски, а также резина.

Химические покрытия. Это вариант, при котором на поверхности металлической конструкции при помощи химической обработки, наносится пленка, устойчивая к воздействию коррозии. Таких пленок может быть несколько разновидностей:

  1. Оксидирование — нанесение оксидных пленок.
  2. Фосфатирование — получение пленки фосфатов.
  3. Азотирование — пленка из активного азота.
  4. Воронение стали.
  5. Цементация — соединение с углеродом.

Также в качестве защиты используется изменение состава коррозийной среды. Еще один вариант защиты — ввести в металл технические соединения, которые повышают стойкость материала к разрушительным действиям коррозии.

Протекторный вид — вариант электрохимической защиты, при которой к конструкции присоединяются пластины с более активным металлом. При этом протектор — материал с отрицательными параметрами потенциала, а защищаемый материал — катод.

Заключение

Процесс коррозийной порчи материала разнообразный и многосторонний. Нюансы зависят от среды, от вида и активности металла, а также от дополнительных факторов влияния. Поэтому существует много способов защиты металлических конструкций от разрушительного влияния ржавчины и агрессивных сред.

Чаще всего применяются защитные пленки, как металлические, так и неметаллические. В отдельных случаях металл специально подвергают химической обработке. Наиболее стабильны по отношению к коррозии считаются благородные металлы, в том числе золото и платина.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: